1 uhdeasat | b1

|w|Tw-u
ot

LRI

AT

il

S|

em o

am

1o bbb

ST
1W|mw "
i, e

<11 il AL L 2od

ik Gl i

S8

v

Iu [

g

o) a0 785
DEPARTMENT OF COMPUTER
1

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

minan 1]
MUy

THE NEW ADDITION

REPORT NO. UIUCDCS-R-89-1535 UILU-ENG-89-1754

QATT: A NATURAL LANGUAGE INTERFACE FOR QPE

by

Douglas Robert—Graham White

August 1989

(‘.’11*3(:063—8—89—153“5) OATT: A .NATURAL_ N30-25590
LANGUAGFE INTERFACE FOR Pt M.S. Thesis

(Illinois Univ.) 50 0 cscL 098

unclas
H2/61 0291075

Ly Ty A ZImE QmE EmE UNEB DU O IMD e e W jie BN wOR T reem mme

(LN o ' e T

QATT: A NATURAL LANGUAGE INTERFACE FOR QPE

BY
DOUGLAS ROBERT-GRAHAM WHITE

BS, Purdue University, 1987

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of llinois, Urbana-Champaign, 1989

Urbana, Nlinois

itwy N WME LMD (Am

e 1

i

(G

»

it

"B
f

Y,

7 b

"y

4

|8

’l

, q‘ [
i

a-

LI

QATT: A NATURAL LANGUAGE INTERFACE FOR QPE

Douglas Robert-Graham White, M.S.
Department of Computer Science
University of Illinois at Urbana-Champaign, 1989

This thesis presents QATT, a natural language interface developed for the Qualitative Process
Engine (QPE) system. The major goal of the project was to evaluate the use of a preexisting
natural language understanding system designed to be tailored for query processing in multiple
domains of application. The other goal of QATT is to provide a comfortable environment in which
to query envisionments in order to gain insight into the qualitative behavior of physical systems.
It is shown that the use of the preexisting system made possible the development of a reasonably
useful interface in a few months. '

PRZCEDING PAGE BLANK NOT FILMED

~
>

1

!

ACKNOWLEDGEMENTS

I first want to thank my thesis advisor, Ken Forbus, for his motivation, patience and guidance.
And many thanks to the members of the Qualitative Reasoning Group, especially Dennis, John,
Randy, and Rob for their help and humor. I owe much to Dr. Richard Grace for his encouragement.
1 also wish to thank AT&T, and my supervisor Mark Dailey, for making my graduate study possible.
" And special thanks to Michelle for her support and understanding.
. This research ‘Was supported by National Aeronautics and Space Administration, Contract
~ Number NAG69137, , an IBM equipment grant, and AT&T.

',,)-'
e et

The a.uthor’s current address :

AT&T Bell Laboratories
2000 N. Naperville Rd.
Naperville, IL 60566-7033

iv

R RD o mms D vmmy i DB WK imp W B MK NP BUR CpEe Im me

ey

7!

¢

{

TABLE OF CONTENTS

1 INTRODUCTION it e e et et e e e e e e e e e e e
1.1 Potential Users . . .- v v i i it e e e e e e e e e e e e e e
1.2 Grammar Skeleton ¢ i i i e e e e e e e e e e e e
1.3 Evaluating QATT i i i it it it e s e e e e e e e e

2 REQUIREMENTS OF NATURAL LANGUAGE INTERFACES

2.1 Efficiency @ i i i e e e e e e e e e e e e e e e e e e

2.2 Habitabilityt e e e e e e e e e
2.3 Self-Tutoring i i it e it et e e e e e e e e e e
24 Awarenessof Ambiguity o oo
2.5 Convenience Features ¢t i i vt vt it i e

3 AT T OVERVIEW e e e e e e e e e e e e e e e e e
3.1 Operationof the ATT i i i i i e e e e e e e i e
3.2 Grammar it ittt e
3.3 Representation i e e e e e
34 Response Functions. i i v i it vttt e e e e e e

4 QATT OVERVIEW et e e e e e e e e e e e e e e e
4.1 QUEry SPace e
4.2 Representationof QPEData e e
4.3 QATT Features i i i it et e e e e e e e e e e e e e e e e e e

B ANALY SIS e e e e e e e e e e e e e e e e e
5.1 QATT as a Natural Language Interface
5.2 Use of General Grammar Skeleton,
53 WhatisMissing i i e e e e

REFERENCES ittt i i et
A SAMPLE DIALOG WITH QATTt vttt vttt et i e e oo
B GRAMMAR EXTENSIONSFORQATTot viiinnnn.n

im0t TR T W o wd omm &Seomr oW mm mw

.

ECY

T

¢

4 e, i

2.1
2.2

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

LIST OF FIGURES

“Minor” modifications tosentences. 4
Multiple sentence phenomena.ttt 4
Top level view of QATT grammar v v v v v v v v e oo e s e e e e e e e 8
The separation of domain-dependent and domain-independent parts in ATT 9
Some sentences understood by ATT ¢t 10
Example of the elliptical capabilities of QATT., 14
Example of the pronominalization capabilitiesof QATT. 15
Example of the host language access capabilities of QATT. 15
Example of the spelling correction capabilities of QATT. 16
Example of the synonym capabilities of QATT. L 17
Example of the paraphrase capabilitiesof QATT. 18
Example of the tutorial capabilities of QATT. 19
Phrases mapped to disambiguated objects. 20
Example of the state filteringcommand. 20

vi

RV |

I

‘ M\”\

lan

8 (T 1]

-

A

4

1 INTRODUCTION

This thesis presents QATT, a natural language interface developed for the Qualitative Process Engine
(QPE), a qualitative simulator (Forbus, 1988).

The major goal for the project is to evaluate the use of a preexisting natural language under-
standing systemn which was designed to be domain-independent. Can off-the-shelf natural language
technology be used to quickly generate reasonably useful interfaces? To answer this question I
built an interface, attempting to replicate the capabilities of preexisting, landmark systems, such
as SOPHIE and LIFER. The other goal of QATT is to provide a comfortable environment in which
to query envisionments in order to gain insight into qualitative models. The hope is that with a
more friendly interface, QPE will become even more useful and accessible. Throughout the thesis,
I will assume that the reader has deep familiarity with Qualitative Process theory (Forbus, 1984)
and QPE.

1.1 Potential Users

When building a natural language understanding system, the first consideration should be the
characterizing the potential users of the system. Users should be classified by their knowledge of the
application domain and by any special requirements they may have. This defines the requirements
of the system.

The potential users of QATT can be divided into three classes :

1. Students trying to learn qualitative physics or the internal workings of QPE.
2. QPE programmers who already know QPE’s inner workings.
3. People using QPE to model real world systems.

Each class of user brings its own problems to QATT. For students it is paramount to minimize
the level of frustration involved in using the interface. Otherwise, they will spend time learning
the capabilities of QATT instead of learning about QPE. This requires QATT to accept a wide variety
of input sentences. When a sentence is not accepted, the system should explain why it didn’t
understand. With this feedback, the student need not spend time guessing about what was not
understood, and can more easily find an alternative statement that will work. The students may
also require more detailed and informative responses, in whole sentences or paragraphs, since they
may be unfamiliar with QPE nomenclature and formats.

The frequency of use of QATT by QPE programmers also places requirements on the interface.
They require quick responses. And as they become more familiar with the interface, they will also
desire customized short-cuts to allow extracting information with minimal key strokes. And finally,
they don’t want to be forced to wade through long-winded textual responses to find the answers to
their queries. They want short, concise responses.

The last class of users of QATT, those using QPE in the field, require all of the above features in an
interface. Since they will probably be fairly frequent users, they need low response delays and the
power to customize their input. But as QPE novices, they will be prone to entering sentences that
the interface cannot understand. Consequently, the interface will need to accept many sentences
in the domain, to be highly tolerant of errors, and to provide helpful feedback when sentences are
not understood.

QATT attempts to make all classes of users comfortable. Being an experimental tool, though,
QATT concentrates on the needs of the constant users of QPE. This is due mainly to the time
constraints of the project, but also to the complexity of dealing with novice users, and the problems
they cause a natural language interface. However, many features of QATT are implemented for the

other kinds of users, and Chapter 4 shows how they make the interface more friendly.

1.2 Grammar Skeleton

QATT was developed from another natural language understanding system called ATT (Martin, 1985).
ATT’s premise was that a natural language understanding system could be separated into a domain-
independent part (grammar, interpreter, etc.), and a domain-dependent part (lexicon). So, with a
general grammar skeleton in place, the ATT could in principle be configured for a new application
just by redefining the lexicon. For QATT then, I would only need to extend the lexicon to reflect the
QPE domain, by adding QPE-specific verbs and nouns, and simply use the existing ATT grammar for
parsing.

1.3 Evaluatmg QATT

A la.rge part of the thesm is the evaluation of this approach Dxd the use of thxs grammar skeleton
aid in the interface’s development? One measure of the approach’s merit is in the amount of effort
required to configure the new domain, which included deﬁmng the lexicon, and in fact extending
the grammar where it was insufficient.

Time constraints ruled out “field tests” on a statistically significant population of users, so
my evaluation wxll of necessn:y be nmore analyt.lc One way to gauge the outcome of this pro_]ect

was an intelligent computer-assisted mstructxonal tool designed to teach troubleshootmg electronic
circuits. SOPHIE included a successful natural language system that i in its time set a new standard
of performance. One hopes that as a technology advahéés,]?e&?ﬁé new systems becomes easier
and easier. SOPHIE was developed in the mid to late 1970’s as part of a multi-year, multi-person
project. QATT was developed in only a few months by me. Has the technology improved enough to

allow SOPHIE-quality interfaces to be rapidly developed? Chapter 5 discusses the outcome.

K

1

[

iy |

CITH

T .,
gl i’

4

A

a0

Anw: aifl

oty

mill A

y!

¢

rr

i

-

I

Wi IEE 4

il

Qme

2 REQUIREMENTS OF NATURAL LANGUAGE
INTERFACES

To characterize the needs of a natural language interface, we must first understand what separates
good interfaces from bad interfaces. The most important factor is the comfort of the user. If a user
is uncomfortable with any interface, it becomes a detriment instead of a helpful feature. In a good
interface, the user does not need to think about it at all. With an “invisible” interface, the user
can concentrate on the task at hand.

In (Burton & Brown, 1979), Burton and Brown give a list of the requirements of a natural
language understanding system. Among these are efficiency, habitability, self-tutoring ability, and
awareness of ambiguity. These are detailed below, and in Chapter 5 are used to evaluate the QA
gystem. : - :

2.1 Efficiency

One thing that users dislike is the delay between the entering of the input, and the eventual response
from the system. While a system is “thinking”, the user may lose interest, his mind may wander,
and by the time the system comes back, he may have forgotten the purpose of the query. Worse
yet is the anxiety of a new user, wondering what he could have done wrong as the system crunches
away slowly.

Burton and Brown cite (Miller, 1968), whose study showed that response delays of more than
two seconds negatively effected the performance of complex tasks on computers. So an interface
should try to respond under this two second mark. But, there is a trade off between speed and
coverage of the sub-language, as the next section shows.

2.2 Habitability

No system to date can understand all of English. Such a system would be incredibly complex
and would have to be infinitely expandable, as the English language is. So natural language
understanding systems typically characterize and understand a subset of English. The system
should strive for, as (Watt, 1968) puts it, a kabstable sub-language, or “one in which users can
express themselves without straying over the language boundaries into unallowed sentences”. The
sub-language should also allow the user to make “minor” modifications to an accepted sentence,
and still get an accepted sentence. Of course, the specification of “minor” is open to interpretation.
But, Brown and Burton give a good example, shown in Figure 2.1. Sentences 2 and 3 seem to be
minor variants of sentence 1, so if the system accepts 1, it should also accept sentences 2 and 3.
Sentence 4 gives a semantic extension, and should probably also be accepted. Sentence 5, though
easily understood in common conversation, is such a permuted variation, that it would probably be
considered out of the scope of a habitable system. So, the sub-language should provide more than
just adequate coverage of the concepts of the domain: it should maintain a comfortable coverage
that will allow users to easily work in the sub-language.

Another feature of habitability is the understanding of context. As a user starts to feel more
comfortable with an interface, she will typically use contextual knowledge in her dialog. The user,
as she starts to feel that the interface is more and more intelligent, will subconsciously start making

1. “Is anything wrong?”
“Is there anything wrong?”
“Is there something wrong?”

“Is there anything wrong with Section 37

AT B B

“Does it look to you as if Sections 8 could have a problemf”

Figure 2.1: “Minor® modifications to sentences.

1. “What 13 the population of Los Angelesf”
2. “What is it for San Francisco?”

3. “What about San Diego?”

Figure 2.2: Multiple sentence phenomena.

more éssumptions about its abilities. Included in what Burton and Brown call the multiple sentence
phenomena are the contextual issues of pronominalization, ellipsis, and anaphoric deletion.

Pronominalization is the use of a pronoun for some referent noun. The only way to define the

referent of the pronoun is to evaluate the context of the conversation, and even then there may be
ambiguities. Figure 2.2 shows an example from (Burton & Brown, 1979). In sentence 2, it refers
to population, but without contextual knowledge, sentence 2 is not clear. And what if the response
to sentence 1 made reference to the increase of the population of Los Angeles as being due to the
beautiful weather there. Then, the it in sentence 2 could be considered as referring to the weather

in San Francisco. Resolving such ambiguous references can be extremely difficult.

Users will often begin to use pronouns as they grow familiar with the system, and it is important
to allow this. To accommodate pronominalization requires recognizing it, maintaining context, and
providing for the possibility of ambiguous reference.

Ellipsis is another multiple sentence phenomena. Sentence 3 of ﬁgure 2.2 provides an example.
Here the system would need to recognize that San Diego is a noun, but the system must also
determine how the current context dictates the noun’s usage (i.e. it will not take the place of
population in sentence 1, but rather Los Angeles).

So ellipsis is the implicit substitution of one element of a sentence for another, based on con-
text. The difficulties with ellipses include recogmzmg “the elliptical reference, which may be only a
sentence fragment, and then finding its place in the current context.

Deletion of a part of a sentence also leads to problems. A user may unknowingly omit a
meaningful part of a sentence, and the system must hypothesize about what is missing. In sentence
3 of figure 2.2, there is no reference to population; not even with a pronoun. So the system

K|

U

i

ARk

i i

|/

€y

ni g

A 11 1

L[]

A

A

s [TR

€

TR IR

11

v

must recognize that a constituent is missing, and then make its best guess as to what that missing
constituent is. -

Habitability can be characterized as flexibility in the sub-language of the application domain. A
habitable system will strive to make the user as comfortable as possible, and itself as inconspicuous
as possible. This will require an adequate coverage of the sub-language, as well as the ability to fill
in information from context.

2.3 Self-Tutoring

As a user converses with an interface for the first few times, he undergoes a learning process that
helps him to characterize the sub-language of the system. As this process continues, the user will
subconsciously limit his interaction to what he thinks is the system’s sub-language. The goal of a
good interface is to make this learning process as fast and painless as possible.

Providing meaningful feedback on mistakes, gives the user the best chance to learn the sub-
language. If the system simply states that it cannot understand the input, then the user is forced
to hypothesize what the error was, and then test this hypothesis. Or worse yet, they may simply
give up on the query, rather than trying to get the computer to understand it. But, if the system
tries to explain why the input was not understood, the user can adjust his input accordingly.

2.4 Awareness of Ambiguity

In nearly all domains, the possibility of ambiguity can arise in a conversation. This can occur
when the user asks a question, understanding it one way, but the system takes it another way and
answers accordingly. For example (again from (Burton & Brown, 1979)):

“Was John believed to have been shat by Fredf” ’

The sentence can be understood as Fred shooting John, or Fred believing that John has been
shot. Both of these interpretations are valid and without complex context analysis, the correct
interpretation cannot be definitely chosen.

So it is important for the system to be explicit in its responses. A simple “Yes” response may
lead to the user thinking that the system understands the question in a completely different way
than it actually does. Explicitly stating its beliefs by responding with :

“Yes, John was believed to have shot Fred.”, or *Yes, Fred believed that John was shot.”
would be more clear and helpful.

2.5 Convenience Features

Some problems with natural language interfaces have nothing to do with their lexical coverage or
their contextual knowledge. Often, the most irritating aspects of a conversation are input oriented.
Hendrix gives some ideas about how to alleviate some of this frustration in (Hendrix, 1977). He
uses paraphrases, synonyms, spelling correction, and access to the host language to make the user
more powerful and comfortable.

Paraphrases and synonyms allow the user to customize his interface. If he is used to referring
to the “Department of Computer Science® as “CS”, he can add to the system the word “CS” and
tell the system that it is a synonym for the “Department of Computer Science”. Similarly, if the
system accepts :

“List the salary of each member of the Department of Computer Science.”

but the user doesn’t want to type that for each department, he can define a paraphrase like:
“Salary CS.”

which will be interpreted by the system as meaning the same as the original longer sentence. The
paraphrase should do more than substitute one set of words for another. It should generalize the
types of words used, and allow further use of the paraphrase. So the user might enter similar
paraphrases that can be interpreted, like:

“Age EE.”

which will print the age of each member of the Electrical Engineering Department. These features
help make the user feel more comfortable by allowing him to define his own environment. They
also increase the user’s efficiency by allowmg them to define short-cuts.

Allowing short cuts and synonyms may also allow the system to functlon while accepting a
smaller sub-language. The idea is to provide some means with which the information can be
obtained, and rely on the paraphrases and synonyms to allow the user to tailor the input language.
For example, if the system doesn’t understand the user’s preferred phrasing:

“The red blocks are supported by what?”®

but does understand :

“What supports the red blocksf”

a paraphrase allows the system to understand his way of asking the question.

Spelling correction is also an important tool. If a user is not a terribly good typist, she will make
many typing errors in her input. And few things are more irritating than having to retype a long,
or even not so long, sentence just because of a typing error. To alleviate this, spelling correction
should be used to spot misspelled words, and then replace them with their corrected form. Such a
simple procedure can add much power and utility to an interface. An important addition should be
made though. The replacement should be exphcxtly stated to avoxd user confuswn if an unexpected
replacement occurs. R

A final convenience feature is access to the host language. Frequent users of a system will want
to do other things outside the interface, like loading files, reading mail, or checking the time. Some
common activities, such as loadmg files, should be incorporated into the system’s sub-language
explicitly. But predicting every necessity is impossible, so a simple command that will put the user
temporarily into the host language can help to make the interface more comfortable.

In summary, a natural language interface needs to be efficient, otherwise the long fesponse
delays may prove detrimental to the user’s performance. It should also understand a habitable
sub-language that will allow the user to comfortably converse in the domain. The system should
provide feedback upon not understanding a sentence to help the user to learn the boundaries of
the sub-language. The system should be careful to avoid misunderstandings due to ambiguity by
explicitly stating its responses so as to reflect its understanding. And finally, some “user friendly”
conveniences like paraphrases and spelling correction will give the user more power in the interface,
and allow him to customize the interface to accommodate his sub-language.

e

\|

t a

JI

F Y

A |

[. 1)

i

d iy

I

Ll

18

1

b

|

1

L

[

n

i

-

il

ql
1

{

3 ATT OVERVIEW

The Augmented Transition Tree (ATT) was a Master’s project by Bruce Martin (Martin, 1985). The
premise was that a natural language understanding system could be divided into domain-dependent
and domain-independent parts. His thinking was that this could lead to the development of a
general grammar skeleton that would parse simple English commands and questions, and call the
domain-dependent lexicon functions to respond to the user.

ATT is a specialization of Woods’ Augmented Transition Network (ATN) (Woods, 1970). The
code was developed from a simple example program in (Winston & Horn, 1984), and was tested in
a blocks-world domain. The idea of an ATN is similar to that of a finite state machine. The nodes
in an ATN correspond to deeper parsing ATN’s, and the arcs correspond to words parsed by the
network. The augmentation comes with the addition of tests on the arcs that conditionalize their
use. There is also the ability to build structures during the parse of a sentence to represent the
ATN’s interpretation of it.

The ATT specializes the ATN approach by not allowing branches to remerge, hence the “Tree”
designation. ATT also does no explicit structure building while parsing. The ends of branches are
analogous to end states in a finite state machine. Figure 3.1 shows a top level graph of the ATT
used as the grammar in the system and is explained in the next section which summarizes the ATT’s
operation.

3.1 Operation of the ATT

The main feature of ATT is the separation of the domain-dependent lexicon from the domain-
independent grammar and parsing mechanisms. The general skeleton consists of a grammar core
that parses some simple questions, assertions, and commands. It also consists of an interpreter
(or in the case of QATT a compiler, also developed from an example in (Winston & Horn, 1984)),
and means of maintaining the lexicon, elliptical references, pronouns, and other features. The
lexicon contains all of the information needed for the specific application, such as the verb and
noun definitions, and the response generating functions.

Understanding a sentence starts with using the ATT to parse it. In figure 3.1 we see that the
highest level in the grammar is called Interface. Transitions are based on characteristics of the
input sentence. If the input sentence consists only of the word “Lisp®, then the lisp arc is taken to
handle a LISP interaction. If the input contains a “f”, then the question arc is taken. Otherwise,
the command arc is taken. This type of testing and transition making continues until the input
sentence is consumed and the appropriate syntactic information is computed.

At the end of a successful parse, the interpreter should find itself at the end of a branch in
the tree. There it should find a call to the Respond function that will determine what domain-
dependent response function to call, using the syntactic information gathered in the parse. The
chosen function will then be called to respond to the user. This allows all of the idiosyncratic
information to be taken out of the syntactic knowledge of the grammar, and into the lexicon.
Figure 3.2 shows how the ATT divides the system into domain-dependent and domain-independent
parts. So, in theory, only the domain-dependent parts, the lexicon and the response functions,
need to be supplied to the ATT in order to prepare it for natural language understanding in the new
domain.

Interface

WH QuU
O (Respond
. (get-binding "verb)
: : ‘verb-command)
| I
] |
| |
I !
l !
\j \j
(Respond

- (Respond

%et bmdlng ‘verb) (get—bi nding *verb)
'verb~-yes—no)

Flgure 3.1: Top level view of QATT grammar

]

ti

i
R

LT

SV

B

am

i |

§[il

)

A

cuon i

q/

¢

am

Input Sentence

Domain
Lexicon

ATI’ PREEEEN S1 Noun

v| Occur Verb

Quantity Subcat

“~<_---7] the article

Respond

Domain Response
Generating Functions

Wh-occur Define-c

Qu-occur

Figure 3.2: The separation of domain-dependent and domain-independent parts in ATT

1. *What are the red blocks?”
“The green pyramid is huge.”

“Put the blue brick in the large boz.”

Ll A

“Is the orange pyramid on the tablef”

Figure 3.3: Some sentences understood by ATT

3.2 Grammar

The general grammar provided by ATT was tested using a blocks-world domain. So it is heavily
biased toward simple questions and commands. It is also a syntactic grammar, rather than semantic.
That means that the parsing is done on a purely syntactic basis. This make sense since it was meant
to cover varied application domains.

Some examples of sentences understood by ATT are shown in figure 3.3. These sentences, and
most of those understood by the ATT’s language, refer to either a specific object, or a class of
objects, characterized by their (previously defined) properties. Later we will see how this caused
problems in the QATT implementation.

The grammar is linear in nature; it can only parse left to right and cannot look ahead or back
easily. This causes problems with some nested references and discontinuous morphemes, but this is
of little harm in QATT. The tree structure also makes arbitrary length conjunctions or disjunctions
difficult. And there are also various other quirks in the grammar that posed problems when applying
it to the QPE domain. These are described in Chapter 5.

3.3 Representation

ATT’s grammar uses an eztensional representation scheme, as opposed to intensional. For example,
the phrase ‘the red blocks® would be interpreted in an intensional scheme as all things that are
blocks and red. An extensional scheme instead provides a list of the red blocks. So rather than
coming up with a definition of the meaning of the phrase, ATT finds the actual objects in the domain
that fit the meaning of the phrase.

The questions and commands accepted by ATT are represented as function calls to appropriate
doma.m-dependent response functions. These functions prov1de the responses to the users. The
entities in the domain are represented by symbols with various properties and values attached to
them. So, “the red blocks® will be represented by a list of all symbols that have the two properties
of being red and being a block. The question “What are the red blocks?” will be represented by a
call to the domain function that handles WH questions for the main verb is, and it will be given
the list of red block symbols as an argument.

10

1!

|

g)

i i
L I}

o

Corm) v il em w4

TR

C

T (

11

1

an

L]
i

¢

e

v

3.4 Response Functions

The domain-dependent response functions are the expressive parts of the system. The set of these
functions is the true definition of exactly what the scope of the interaction with the user can be. The
functions are keyed to verbs; that is, they are used to respond to sentences with their verb as the
main verb. The functions for each verb and their arguments are included in the lexicon as part of the
verb’s definition. Upon successful parsing of the input sentence, the grammar having determined
the main verb and sentence type, the Respond function gathers the appropriate arguments for the
response function, and then calls that function with its required arguments.

As an example, let’s take the question “What are the blocksf” Since the main verb is 15, and
the sentence is a Wh- question, the function called is WH-IS. WH-IS takes arguments like SUBJECT,
OBJECT, PREPOSITION, OBJECT-OF-PREPOSITION, and WH (for the type of wh-question ; what, how,
who, etc). Respond must then gather all of these arguments, of which only the SUBJECT is bound
in our example. Then WH-IS is called with its arguments, and by seeing that WH is what, that only
the SUBJECT is bound, and that the SUBJECT is a list of nouns, it will proceed to print these nouns
on the screen. The response would have done something completely different if the WH had been
where instead. So these domain functions are usually large conditional structures, and they should
be carefully engineered to inform users of their capabilities.

Once the grammar is capable of parsing the sentence and providing the correct verb function
with the appropriate arguments, it is up to this function to decipher the actions to be taken based on
the arguments given. So the response functions require the most programming effort and attention
to detail.

Now that we have a basic understanding of the natural language understanding skeleton that
was the foundation for QATT, we next examine the QATT implementation in detail and the problems
encountered using the ATT.

11

4 QATT OVERVIEW

This chapter examines the features of the QATT implementation; specifically, its representation of
QPE objects, the verbs used for the sub-language, and the implementation of its major features.

4.1 Query Space

In order to define a sub-language for QATT, it was necessary to first characterize a query space for
QPE; that is, a set of question types that could easily be answered by a QPE envisionment. Once
this query space is defined, a set of verbs can be selected to cover it.

The first type of interaction with QATT concerns simple information about the entities in the
lexicon and the envisionment. For example, “What are the quantities?” and “Display the verbsf”.
This type of mteractxon typlca.lly producu a hst of the specxﬁed ob]ects
instance, *“When is the amount of water in G mcrcaamg?’ or the more general “How can the
amount of water tn G changef” For these cases, a list of states should be produced for each of the
qualitative changes in the quantlty Along with qualitative changes go questions of influence, such

as “What influences the amount of water in G?” Here the response should be a list of processes or
views and their effect on the quantity. B

For processes, the questions will centéfié.}ound in what states they are active. “When 13 PI2
active?” should be responded to with a list of the states in which the process is active. Asking
what quantities a process can affect, as in “What does PI2 influence?” should produce a list of the
quantities that the process causes to increase or decrease.

Questions about limit hypotheses focus on the conditions under which they may occur. “When
can LH2 occur?” would give a list of the states that satisfy the limit hypothesis’ starting envi-
ronments. “What can LH2 lead to?” would respond with a list of possible end states of the limit
hypothesis.

Qualitative states of a system can contain a great deal of information, and so will be the subject
of many queries. Most queries concern the properties of a state, like *“What is the duration of 83797
and “Is S$ an end state?”. There are also questions about transitions to and from other states;
*What states have no transitions out?®, “Does S9 have transitions in?”, *Can S8 occur from S27°.

Finally, in order to examine large envisionments, it is often necessary to isolate the subset of
states that conform to certain specifications. This smaller set may then be examined more carefully.
To do this, some sort of filtering mechanism is needed. So a command like *Define FOO as the
set of states where the amount of water in G is increasing and the flow of water from F to G is
active.” should force FOO to refer to the set of states which have both of these properties.

That is the basic query space covered by QATT. It concentrates on the specification and manip-
ulation of sets of states, and provides reasonable insight into the envisionment. Now we will see
how this query space is accommodated by the lexicon.

4.2 Representation of QPE Data

To provide a lexicon which the ATT grammar can use in parsing, we must add words relevant to
the QPE domain. This includes verbs that might be used in the discourse, nouns to represent the
QPE objects, and subcategories that provide a means of referring to nouns by their type.

12

i

I

1)

ol

]

T

-

amp

(¥

an

4|

1 - 4.2.1 Verbs

Two kinds of verbs are used by QATT. First there are domain-independent verbs. “Be” is used
extensively for all of the “What is...” questions. “Display” is used in commands to show the

= elements of some data type. “Load” and “save” are used for file manipulation and with paraphrases

or synonyms. “Set” and “Reset” are for toggling QATT system flags. “Use” is used for synonym
= creation and for window manipulation. Finally, “Erase” is used to remove elements from the QATT
— lexicon.

Several verbs were added for the QPE domain. “Define” is used for the state filtering commands.
= “Change”, “influence”, “increase”, and “decrease” are all used for questions about the changes of
= quantities and the effects of processes. “Occur?, “hold”, and “happen” are for questions about limit

' hypotheses. And finally “lead” is used for questions about what states are attainable from other
- w states and the ending states of transitions. '
i 4.2.2 Nouns
% The nouns used in QATT generally parallel the objects in the QPE domain. Each noun has several

properties, and can also be part of a subcategory. For example, the noun “PJ0” is a member of the
PROCESS subcategory. Additionally, each noun has two printing routines that specify how it is to
be displayed to the user for different levels of detail.

The first nouns are the QATT flags which allow the user to control global parameters. The only
— flags now implemented are for controlling the level of detail in the output of responses. Each flag
= has associated with it a : VAL field that holds its current value.

The properties of the QATT nouns corresponding to QPE objects are extracted from the envision-
- ment. The extracted properties of quantities include the processes and views which directly and
indirectly influence them. The states in which the quantity is increasing, decreasing, and constant
are also computed. For states, its status, duration, environments, and active process and view
instances, along with transitions to and from it are extracted.

Quantities are represented in the lexicon by nouns. For QATT to have a single symbol to identify
with a given quantity, each is given a name (i.e. QO0, Ql, ...). To provide a means to match a
quantity with a phrase like “...the amount of water in G...”, an :INFO field is used to hold the key
words found in the quantity object, such as (amount-of water liquid G).

Nouns for states are given the properties status, duration,active-pis, active-vis, assumptions,
and lists of transitions to and from the state. To keep a pointer to the QPE object, there is a
:QPE-SIT field. A state may also be an end state (no transitions out), an eden state (no transitions
in), or an isolated state (no transitions in or out). These properties are added to the state noun as
appropriate.

Limit hypothesis nouns include the start-envs and end-envs which point to the environments
that the limit hypothesis can occur in and lead to respectively. Process and view nouns only have
the :INFO field that is used much like that in the quantity nouns to match processes with phrases.

4.2.3 Subcategories

g Each type of noun must have an associated subcategory. These are used by QATT to identify

= groups of nouns based on their properties. The QATT subcategories are gquantity, state, transition,

- environment, process, view, and set. Subcategories are also used to refer to the fields of nouns,

— like status, snfluencer, and start-env. Several general properties of nouns are also encoded as
- 13

8 ?--what is the status of 83?7
<PARSED>
STATUS of S3 is R-COMPLETE.

9 ?--duration?
DURATION of S3 is INTERVAL.

10 ?--827
DURATION of S2 is INTERVAL.

Figure 4.1: Example of the elliptical capabilities of QATT.

subcategories, such as end for states and empty for sets. The information for each subcategory
must also be duplicated for its plural form. - 7

Stored with each subcategory is the list of nouns having it as a property. This is a feature of the
ATT. So, for example, the subcategory QUANTITY, contains a list of all of the quantity nouns. This
listing of members of subcategories is necessary since the ATT uses an extensional representation.

4.3 QATT Features

This section covers the implementation and hmlts of the major features of QA'I'T It begins by
examlmng those features that are domain-independent, such as paraphrases and ellipsis. Then it
examines those that are particular to the QPE domain.

4.3.1 Domain-Independent Features

Most of the domain-independent features deal with the context of discourse. These have been
implemented in a general manner so as to be useful in any ATT application.

Ellipsis was pa.rtlally 1mplemented in ATT. The mechanics for maintaining a copy of the parsing
of the last sentence was in place, but it made many errors. ATT would try to place the elliptical
reference into one of two noun slots; subject or object. The QATT ellipsis implementation added the
possibility of the noun occupying the slot for the object of preposition. It also checks to see that
the slot was actually used in the previous context, unlike ATT. This allowed dialogs like that shown
in figure 4.1.

The ATT context mechanism also allowed limited pronominalization. This is accomplished by
maintaining a *last-noun* variable, and substituting its value for the pronoun, as in figure 4.2.
This was left unchanged for QATT.

Access to the host language was also partially implemented by ATT through the acceptance of
the simple sentence “Lisp.” This command awaits input, and then evaluates that input as a lisp
expression. QATT added the ability to load and save files directly from the grammar. Having such
common actions available through the grammar may increase the user’s confidence in the interface.
But it is necessary to give the user raw access to the host, since it is impossible to provide for all
types of desired interaction. Figure 4.3 illustrates.

14

v

i

o 6l w4

qie

!
I

an

€

!
[

K

Wi

L

¢Em

26 ?--what is the amount-of water in G?
<PARSED>
AMOUNT-OF(C-S(WATER LIQUID G))

27 ?--what influences it?

<PARSED>

AMOUNT-OF (C-S(WATER LIQUID G)) is influenced indirectly by
(CONTAINED-STUFF (C-S(WATER LIQUID G)))

Figure 4.2: Example of the pronominalization capabilities of QATT.

16 ?--load "/u/white/new-att/qpe-att/string.lisp"!

<PARSED>

;7 Loading source file "/u/white/new-att/qpe-att/string.lisp"
17 ?7--lisp.

-> (* 3.14159 3)
9.42477

Figure 4.3: Example of the host language access capabilities of QATT.

15

52 7--does sO have transitons?
<PARSED>
No transitions in to SO.
No transitions out of SO.

(Replaced TRANSITONS with TRANSITIONS)
33 ?--show Foo.

I am stuck on the word SHOW.

Do you have a replacement word? (word or <enter to fail>) :display
Got it, DISPLAY for SHOW, thanks.
Should I consider SHOW a synonym for DISPLAY? (Y or N) y
Trying to add SHOW as a synonym for DISPLAY

Adding synonym SHOW for (DISPLAY)
<PARSED>

Figure 4.4: Example of the spelling correction capabilities of QATT.

Spelling correction was added in QATT. It works as follows. All words in the lexicon are encoded
in a correction table using the Soundex algorithm (Knuth, 1973). When a sentence fails to parse,
QATT looks for any unknown words. For each unknown word, its soundex code is computed and
used to fetch all words with the same code, which constitutes [:hg ‘words in the lexicon the unknown
word is a possible misspelling of. The sentence is re-parsed with each candidate in turn until one
of them is understood. If no acceptable substitution is found, the user is prompted for one. Then
she is asked if her replacement word is a synonym for the unknown word. If so, then that synonym
is added. This allows the interface to learn new terms in the domain without explicit synonym
creation by the user. (See figure 4.4)

The synonym capability was also added for QATT. It allows the interface to learn new terms in
the sub-language and to provide short cuts for the user. It is implemented with a table that matches
the synonym with its associated list of words. When a sentence is input, it is first searched for
known synonyms, and these are replaced by their associated words. For efﬁclency, only one-word
synonyms are allowed, since searching the sentence for arbltranly long sequences of words would
be too time consuming. Synonyms may be defined from unrecognized symbols, as above, or by an
explicit “Synonym.” call, or in the grammar with the “Use” command. Examples are shown in
figure 4.5.

16

»
|

fii € [

H
e |

€'y,

Wl

(m e00 MR g,

IR
)]

A

[

I

i

(1

e

-

r

i

27 ?7--synonym. ‘
Words :amount-of-in of water in f

Synonym :amt-g

Adding synonym AMT-G for (AMOUNT-OF-IN OF WATER IN F)

28 ?--how can amt-g change?

<PARSED>

AMOUNT-OF-IN(WATER LIQUID F) is increasing in (S3)
AMOUNT-OF-IN(WATER LIQUID F) is decreasing in (S6)
AMOUNT-OF-IN(WATER LIQUID F) is constant in (SO S1 S§2 §4)

20 ?7--use amt-of for amount-of.
<PARSED>
Adding synonym AMT-OF for (AMOUNT-OF)

30 ?--what is the amt-of water in £7?

<PARSED>
AMOUNT-OF(C-S(WATER LIQUID F))

Figure 4.5: Example of the synonym capabilities of QATT.

Paraphrases were also implemented for QATT. These provide the ability for users to customize
their environment by providing alternative ways to say something. Figure 4.6 shows the use
of a paraphrase. The example sentence is parsed, and then common words are found in the
paraphrase. These words are then generalized to their lexicon classification and the part of the
sentence they represented, so the paraphrase can accept a larger variety of paraphrases. In the
example, “duration” was generalized to any sequence of subcategories, and “s$8” to any object of
preposition. Then a segment of an ATT branch that will parse the paraphrase and interpret it as the
example sentence is created and incorporated into a list of similar segments for other paraphrases.
A short description of this segment is displayed to the user showing how the paraphrase was
interpreted. These paraphrases may also be saved and loaded to maintain a user’s environment
across sessions.

4.3.2 Domain-Dependent Features

These features are either specific to the QPE domain or are implemented in the domain-dependent
response functions, and hence not a part of the ATT skeleton.

Feedback to the user is divided into two parts. An ATT domain-independent part tells the user,
upon not understanding a sentence, how much of the sentence the interface did understand, with
the idea that the rest is incorrect. This will help users identify exactly where the error may be,
rather than just telling them that the sentence is wrong. The domain-dependent part of feedback
comes in the response functions. Each response function contains branching conditionals that
key on values of parameters. If a combination of values is not accounted for, but the grammar
parsed the sentence, then the response function should explain to the user why a response is not

17

19 ?--paraphrase.

Sentence :what is the duration of s83?
Paraphrase :duration s3?
<PARSED>

require generalized SUBCATS (for DURATION)
require generalized OBJOP (for S§3)
require ?

20 ?--duration 33?
<PARSED>
DURATION of S3 is INTERVAL.

21 ?--duration and status s27
<PARSED>

DURATION of S2 is INTERVAL.
STATUS of S2 is R-COMPLETE.

Figure 4.8: Example of the paraphrase capabilities of QATT.

available. This expla.natxon often requires prlntlng some background information about the domain
or implementation status.
Feedback provides one of the tutorial abilities of the interface. QATT’s other main tutorial feature

is its access to the commands, nouns, quantities, and any other noun or subcategory. This allows
even a novice to quickly get a rough idea of the capabilities of the system. Also, the use of system
variables to control the level of output detail can also help the user to understand the domain more
easily. Figure 4.7 demonstrates some of QATT’s feedback and tutorial capabilities. - -
Ambiguity handling also must be done in the response functions. This is handled by making
responses to the user explicit as to their meaning and the interfaces understanding of the question.

QATT should never respond with a “Yes.”, but should always qualify its answer, like “Yes, 59 is

an end state.” Further, when a response function makes an assumption in the case of anaphoric
deletion, that assumption should be made clear. For example, “What can IA3 lead to?” is assumed
to refer to the states that 1h3 leads to. The response makes this clear: “LH3 leads to the following
states..

QATT makes available the use of different streams for output. This allows the user to choose

where the system’s responses are to be displayed. This was added to take advantage of Symbolics’
Scroll Windows for viewing detailed output, but may also be used for other purposes, such as

appending output to a ﬁle To implement this the ‘Use verb was extended and window ' mouns .

responses, it was also possible to compa.re two responses sxde by 51de Sumlar nouns could also be
added for output to files.

By far the most complicated feature of QATT is the state ﬁlterlng feature This allows the user
to define sets of states that conform to certain characteristics. This new set may then be examined

18

o)) ong € ISR |t

Al wi.

]

A |

21|

gy

17/

(S

|

‘l‘h

b

1

0"

(o

12 ?--what quantities does 1h3 lead to?
<PARSED>
I can only answer questions about states or envs for LEAD.

13 ?7--what are the processes?
<PARSED>
LIQUID-FLOW(WATER G F P1)
LIQUID-FLOW(WATER F G P1)

14 ?--what are the commands?
<PARSED>’
SAVE DEFINE USE LET CALL SET RESET

18 ?--what is A?

I don’t understand.
I got as far as :(WHAT IS)

Figure 4.7: Example of the tutorial capabilities of QATT.

more closely as desired. The problem with the implementation of this feature came from the ATT
grammar. It was simply not capable of handling such a complex command.

The first step in the filter implementation was getting the grammar to accept phrases that
corresponded to quantities, processes, and limit hypotheses. To do this, I added to the grammar
semantic extensions of quantity, process, and limit-hypothesis phrases. These were, unlike the
rest of the grammar, semantically defined, not syntactically. To match a quantity, for instance,
I required that words appearing in the quantity description in QPE be used in the phrase. For
example, the QPE quantity AMOUNT-OF (WATER,LIQUID,G) could be matched by the phrase “the
amount of water in G”, since the words “amount®, “water”, and “G” all appear in the quantity
description.

To do this in a manner that would extend across QPE domain models, the use of preposi-
tions to explicitly refer to properties of nouns was not feasible. Instead, I used the above textual
matching method. This method, though, was not sufficient in some cases. For example, the
phrase “flow of water from F to G” could match the processes LIQUID-FLOW(WATER,G,F,PIPE1)
and LIQUID-FLOW(WATER,F,G,PIPE1). The prepositions must be used to help disambiguate this
phrase. To do this in a QPE-domain-independent manner, each QPE domain model must define, for
each type of process or quantity that may cause such ambiguity, the prepositions that are keyed to
argument positions. For example, for LIQUID-FLOW the preposition “(of)” may be used to refer to
the first argument, “(from, between)” for the second, “(to, between)” the third, and “(in, through)”
for the fourth. With this information, the phrases in figure 4.8 can be disambiguated. If the phrase
cannot be disambiguated, the user is asked to choose from a list of the possible matches.

But the filtering commands still need to parse specifications for these objects, like “increasing”
for quantities, or “active” for processes. And then the name of the set has be parsed and stored.
Then, once the command can actually be parsed, the response function is responsible for finding

19

o “flow of water from F to G* =
LIQUID-FLOW(WATER,F,G, 7path)

e “flow of water between F and G through PIPE1” =
LIQUID-FLOW(WATER,F,G,PIPE1) U LIQUID-FLOW(WATER,G,F,PIPE1)

o “flow of water to G* =
LIQUID-FLOW(WATER, ?source, G, ?path)

Figure 4.8: Phrasm mhpped to disaxﬁB:igugted objeéta.

31 ?7--define FOO as the set of states with the amount-of water in F increasing
and water flowing from G to F.

<PARSED>

Set: FOO

Elements: (S3)

Size: 1
Set FOO

32 7-- Show F0O0.
s3

Figure 4.9: Exa.mple of the state filtering command.

the elements of the set that correspond to the spec1ﬁcatxons, and then mcludmg the set in the
lexicon. An example of this interaction is shown in figure 4.9.

20

1
L

(]

1
i

i |

I

Qi A

an

CIf]

¥

!

LK

1 qu

)

]

5 ANALYSIS

The previous chapter summarized the features of QATT and the major additions made to the ATT.
This chapter evaluates the interface along the requirements of a good natural language interface
and compares its capabilities with those of SOHPIE. But, of course, the real test of the system
will come when people try to use it routinely. Finally, some general comments are made about the
suitability of using an ATT as a foundation for constructing a natural language interface, based on
these comparisons and my experience building QATT.

5.1 QATT as a Natural Language Interface

To judge the results of the QATT interface, I will evaluate its habitability, efficiency, handling of
context, self-tutoring abilities, awareness of ambiguity, and its convenience features.

5.1.1 Habitability

SOPHIE’s strongest feature is habitability. This would seem necessary, since the interface is used
in an educational environment with novice users. And since, due to time constraints, QATT was
aimed at the frequent users of QPE, habitability suffered somewhat.

In the limited tests of QATT, it seems to cover the query space well when the user knows
what types of questions it understands, as there are several ways to ask these questions that are
accepted. But in some cases, especially the set filtering command, the format accepted is quite
rigid. The lower coverage of QATT is due to two factors. First is the syntactic nature of the
grammar. A semantic grammar is more flexible, and can be made to parse more varied sentence
formats, because it looks for semantic components, not syntactic constituents. But, since the ATT
grammar is designed to be domain-independent, it clearly cannot be semantically oriented. The
QATT grammar, being syntactic, needs to take explicit measures to accept syntactic orderings for
all sentence types, blind to their semantic content. A semantic grammar gains leverage by knowing
what types of sentence formats make sense for specific kinds of phrases. For example, a semantic
specification of a phrase for measurement in an electronics domain can expect to see a measurable
quantity, followed by a preposition, and then some part or place where the measurement is to be
taken (Burton & Brown, 1979). But a syntactic grammar will have no such leverage, and must
parse the phrase with no expectations about its content. To do this in a domain-independent
manner, all grammatical word orderings would need to be represented in the syntactic grammar.
So to have the wide coverage of SOPHIE, QATT would have to accept virtually any grammatical
syntactic sequence. And this is, of course, not feasible for as diverse a language as English.

The second factor for QATT’s lower coverage is limited development time. Much of the coverage
provided by the interface is implemented in the domain-dependent response functions. If the
sentence is parsed by the grammar, it is up to the response function to provide the response. With
limited time, some queries that are parsed by the grammar were not implemented in the response
functions. So this is not a weakness of the QATT system, but rather a time constraint problem.
With more time, the response functions could be extended to handle those parsed queries.

5.1.2 Efficiency

To gain coverage in the ATT grammar, many additions were made in the form of optional branches.
The prime example is the various ways to phrase “/To] what [states| does LHS lead [to]?”, where the

21

[]’s denote optional words. Allowing for such varied parses increases the coverage of the grammar,
but necessarily decreases the efficiency of the interface, since it must repeatedly follow the wrong
branch past optional nodes. But this is the price to be paid for wide coverage. QATT cut optional
branches to a minimum.

In the blocks world, ATT’s typical response time was around 4 seconds. QATT responds to short
(5 to 8 word) queries in an average of 3 seconds when run on a Symbolics or an IBM-RT. In the
worst case, an unparsed set filtering command, responses are around 6 seconds. These times could
be improved by pruning the ATT grammar to better fit the QPE query space, but this would be
violating the goal of the project to develop the interface from a preexisting grammar.

5.1.3 Context

The revisions to the ATT context mechanisms for QATT have put it nearly at the level of SOPHIE.
QATT has a record of the “last-noun” used in the context. This last-noun is then used as the referent
of subsequent pronouns. So in the sentence * What influences it9”, “it” is assumed to refer to the
value of *last-nouns.

SOPHIE is able to handle context references like (Burton & Brown, 1979): “Set the voitage
control to .89", *What is the current thru R9?®, “*What is it with it set to .9?”. In the third
sentence, it is able to determine that the first “it” refers to “current”, and the second refers to

voltage control®. The difference comes from SOPHIE’s use of its semantic grammar to predict
missing or pronominalized constituents. QATT can only hypothesize from syntactic information.

. QATT’s ellipsis handling is nearly as powerful as SOPHIE’s. QATT assurmes the elliptical references
are always to nouns. SOPHIE allows elliptical references to prepositional phrases, as in the sequence
“What is the base current of Q89”, *Thru the emitter?®. The QATT ellipsis mechanism could be
configured to handle this type of reference, but as of yet it was not found necessary.

SOPHIE uses its semantic grammar to make assumptions as to the content of missing con-
stituents in anaphoric deletions. By noting the possible semantic portion missing in a sentence, it
is able to make intelligent guesses as to its referent. For example, if there were a semantic rule for
“lead to” questions about limit-hypotheses, it might look like:

What states does <limit-hypothesis> lead to?

If the input sentence is “What does LHS lead tof”, the grammar can assume that the missing con-
stituent is “states”. In QATT, the guessing is left up to the response functions. The sentence must
still be parsed by the grammar, and if a constituent is unbound, then the response function can
simply make an assumption about what it is. This assumptxon is “hard-coded” into the function,
and has no notion of context.

QATT could also use a notion of “last-state” for context. For example, the sequence “What state
does LHS lead tof*, *Can S8 occur from there?” could be disambiguated with this information.
This was not implemented mainly due to the time constraints, but also due to my reluctance to
make domain-dependent alterations to the ATT grammar.

5.1.4 Self-Tutoring

Being an educational tool, SOPHIE is extremely strong in its self-tutorial abilities. It not only tells
the student why it could not understand a sentence, but it is also able to explain to the student
why a sentence might not make sense in the domain. This ability is partially implemented in
QATT and is incorporated in the response functions, the equivalent of SOPHIE’s specialists. QATT’s

tutorial abilities could be improved by simply expanding the explanations of misunderstandings

22

an a4 mil Al [‘ o

an

ol gl

(m

T 1 (Af T

W]

Qi

{

[

i

B

GOl

il

in these response functions. It is not shown in (Burton & Brown, 1979) that SOPHIE provides
feedback when a sentence is not successfully parsed, such as the QATT’s “ got as far as ...”. LIFER
provides this and goes a step further by suggesting possible categories of words that might fit into
the sentence to make it understandable.

5.1.5 Ambiguity Awareness

Like SOPHIE, QATT responses have been carefully worded so as to make any implicit assumptions
clear to the user. If the context mechanisms for QATT were extended to include the “last-state”
notion above, then there could possibly be more chance of ambiguous references. But as long as
responses are explicit about their suppositions, this should not cause a problem.

5.1.6 Convenience Features

QATT’s strong suit is the convenience features that it provides to the user. These are the synonyms,
paraphrases, access to LISP, and spelling correction. This again is mainly due to the focus of the
interface on the the frequent QPE users. Since SOPHIE is not as strong as LIFER in this area, I
will use LIFER as the benchmark.

Access to the host language is simple enough. LIFER provides a command to access LISP, but
it does not allow for host interaction through the grammar. QATT presently only accepts loading
and saving of files in the grammar, but these commands were very easy to incorporate, and others
could be added just as easily. Executing such commands inside the grammar makes the interface
more helpful to the user.

The QATT synonym facility appears to work as well as LIFER’s. Its only problem is the inability
to handle multi-word synonyms, such as “level in C” for “the level of water in can C”. This was
an efficiency consideration, since searching for arbitrarily long strings in the sentence is so time
consuming. Having synonym definition possible from the grammar, which is done in LIFER as
well, further aids habitability.

The paraphrase ability of QATT is limited when compared to LIFER. LIFER is able to not
only paraphrase whole sentences, but it can also find hidden paraphrases in these sentences. For
example, using “Salary for CS Faculty” for “Print the salary of everyone in the Computer Sci-
ence Department.”, LIFER would build a large paraphrase for the short sentence, and also build
a sub-paraphrase that matches “CS Faculty” with “everyone tn the Computer Science Depart-
ment.”. QATT can only paraphrase at the sentence level, but does generalize enough to make these
paraphrases useful in other contexts, as shown in figure 4.6.

LIFER handles paraphrase definition exclusively inside its grammar. So a definition would be
something like “Use [paraphrase/ for [sentence/.”. QATT was not implemented this way because of
the complexity of re-configuring the grammar. Instead, the simpler “fill-in-the-blank” approach was
used. This may tend to decrease flexibility of the interface, but the time needed to accommodate
definitions in the grammar could not be justified.

The Soundex algorithm used for QATT’s spelling correction does not seem appropriate for typing
errors. The algorithm was developed for airline reservation systems that experienced problems with
misspelled names, not because of typing errors, but due to letters sounding the same over the phone.
So Soundex maps strings of letters to strings that may sound the same. LIFER and SOPHIE both
use a spelling correction algorithm borrowed from INTERLISP. This method locks for transposed
letters and double strikes, making it more suitable for finding typing errors.

23

QATT does however come back to the user if no successful substitutions were found in the spelling
hash table. It also makes synonym definition immediately available to the user in that case. And
like LIFER and SOPHIE, it does inform the user of any substitutions made.

One possible enhancement to the spelling correction would be to keep the system from sub-
stituting for words that are unknown, not because they are misspelled or new terms, but because
they represent objects that don’t exist in the domain. For example, in an envisionment with only
5 states, “Display S197” will actually display SO, and then tell the user that the substitution was
made. This determination as to what words are semantically valid but don’t refer to anything,
would need to be domain-dependent though, and was not implemented. An alternative solution
would be to ask the user if a proposed substitution is acceptable before responding.

5.1.7 Summary

To get QATT as close to the level of SOPHIE as feasible would require approximately three months

of refinement of the domain-dependent parts of the interface. The domain-independent parts, with
the exception of the grammar, appear to be roughly as capable as those of SOPHIE. But for the
grammar to achieve the coverage of SOPHIE, it would need to be extensively altered and tuned for
the QPE domain. And in so doing, the efficiency of the interface could also be improved by trimming
branches for the QPE query space. This would have violated the spirit of the project, which was to
take a general grammar and build on it a QPE natural language interface. However, while QATT is
not as robust as SOPHIE’s interface, it appears to be reasonably useful.

5.2 Use of General Grammar Skeleton

Initially, using ATT as the basis for the QATT interface seemed to offer a fast means to development.
And it also looked as if I could construct this natural language interface without any formal linguistic
training. The results, though not perfect, are very promising.

The ATT grammar was implicitly biased toward the blocks world domain that it was tested on.
Most notably, the prepositional phrases were assumed to be restrictive. For example, in “The block
in the boz on the table...”, the prepositional phrase “n the boz” restricts the blocks considered, and
“on the table” restricts the boxes considered. The extensional representation of ATT also demanded
that these restrictions be explicitly recorded in the properties of each object. So in our example,
the blocks that matched would need to have BOXn in their field : IN, where BOXn is a box with TABLE
in its : ON field. o

“An important goal was to make QATT work with any QP domain model that QPE could simulate.
So to handle prepositional phrases, a new type of non-restrictive prepositional phrase parse was
devised that merely parses the prepositional phrase and returns its contents without regard to any
restrictions. The restrictions are then worked out using the ordered prepositions that are supplied
for each QPE domain model, as shown in section 1.3.

Every application is bound to face similar obstacles when trying to fit a “general” grammar to
a specific application. This will be the case until the (unlikely to be soon) invention of a complete
natural language understanding system.

Until then, to gain coverage beyond the scope of the original grammar, a linguistic novice is

forced to mampulate the grammar to fit her needs. Inevitably, this will lead to many optional
branches, as in QATT, or possibly even reduced coverage as the grammar is hacked at by the
programmer.

24

Ll

{0

& i vl Wi M el @ v

L 1R

L

Il

=

(i

v oo o Qromn

N

L I) LI

]

However, once the query space is accepted by the grammar, the division of domain-dependent
and domain-independent parts of the interface make implementation of reasonable responses easy.
By planning ahead for required properties of nouns, and exactly which nouns will be implemented,
the lexicon can be quickly developed and serve as the data base for all of the responses. Verbs can
be added to expand the interface’s coverage, and the detail of responses can be changed as the need
arises. As time permits or as the need arises, the programmer can work on the response functions
without touching the grammar or lexicon. With a few hours of work, a verb can be added to the
system and all of its response functions can be debugged to provide adequate responses to the new
sentences.

In a few months, I was able to develop a reasonable natural language interface using this general
grammar skeleton, with minimal linguistic experience. The only real difficulty came in manipulating
the grammar to achieve greater coverage of the query space, and in devising new methods of parsing
when the general grammar failed to meet my needs. Most of the work done in the project, the
increased coverage, the context knowledge, and the convenience features, were extensions of the
general skeleton, and would transfer to other domains. Using the general skeleton made possible
the development of the interface in a matter of months rather than years.

5.3 What is Missing

QATT remains wide open for enhancements. Many improvements would be simple, but could not be
accomplished with my time constraints. One example is displaying the paraphrases and synonyms
in an easy to read format. Increasing the coverage of the response functions would also be easy,
and could increase the system’s habitability. A more appropriate spelling correction algorithm,
like the one in INTERLISP, would not be hard to implement. And if the system could respond to
“Help!” with a short explanation of the interface’s capabilities and commands, it might help the
novice user.

Some enhancements would take more integration but would not be too difficult to implement.
Linking QATT with ZGRAPH, a graphical display utility, could allow the user to point to states, as if
to say “That one.”. QPE could also be run from QATT. Providing a word completion capability that
would find a known word and display it once enough characters have been entered to disambiguate
it, could make the interface more habitable and reduce typing errors. And using internal interface
routines to fetch envisionment data rather than explicitly copying it into the lexicon would make
the domain-dependent part of QATT more modular and easily modified.

And there are more complicated, theoretical extensions that would require significant work.
One promising extension would be the use of a text generation system that could provide english
text from semantic descriptions derived in the response functions. Another would be to incorporate
a “user model” that monitors a user’s knowledge of the domain and of the interface, and adjusts
responses accordingly. And extending ATT to build a syntactic structure of the input sentence could
provide more information to the response functions, and allow the paraphrase utility to capture
nested paraphrases as LIFER does.

L J

25

REFERENCES

Burton, R. R and Brown, J. S. Toward a natural-language capability for computer-assited instruc-
tion. Procedure for Instructional Systems Development, 1979.

Forbus, K. Qualitative process theory. Artificial Intelligence, 24:85-168, 1984.

Forbus, K. QPE: a study in assumption-based truth maintenance. International Journal of Artificial
Intelligence in Enginecering, 1988.

Hendrix, G. G. Lifer: a natural language interface facility. SIGART Newsletter, 61, 1977.

Knuth, D. E. The Art of Computer Understanding, second edition, pages 391-392. Volume 3,
Addison-Wesley, 1973.

Martin, B. The limitations of augmented transition tree interpreters as natural language interfaces.

Master’s Thesis, University of Nllinois, 1985.

Miller, R. Response time in man-computer conversational transactions. AFIPS Conference Pro-
ceedings, 1968,

Watt, W. Habitability. American Documentation, 19, 1968.
Winston and Horn. LISP second edition. Addison-Wesley, 1984.

Woods, W. Transition network grammars for natural language analysis. CACM, 13, 1970.

26

¢

{i

i

ai

€

ql

|

i

ol € ser Gl

I

|
i

{

uy

11

Tl

=

i

i

A SAMPLE DIALOG WITH QATT

> (init-att)

Loading data...

::: Loading source file "/u/white/new-att/qpe-att/q-init.lisp"
Initializing)

Adding verbs

Adding QPE data

i+: Loading source file "/u/white/new-att/qpe-att/spec.lisp”

Adding parts
;+: Loading source file "/u/white/new-att/qpe-att/ord-preps.lisp"

Initialized.
#P"/u/white/new-att/qpe-att/q-init.lisp"
> (start)

O 7--what are the flags?
<PARSED>
DETAIL NIL
SHOW-TYPE NIL
FORM T

1 ?--what are the commands?
<PARSED>
SAVE DEFINE USE LET CALL SET RESET

2 ?--what are the states?
<PARSED>

SO0 81 S2 S3 84 §Sb
3 ?--set detail.
<PARSED>
DETAIL set.

4 ?7--what are the quantities?
<PARSED>
VOLUME(C-S(WATER LIQUID G))
VOLUME(C-S(WATER LIQUID F))
TOP-HEIGHT(G)
TOP-HEIGHT(F)
TEMPERATURE(C-S(WATER LIQUID G))
TEMPERATURE (C-S(WATER LIQUID F))
TBOIL(WATER G)

27

il

Ly

AMOUNT-OF-IN(WATER LIQUID G)
AMOUNT-OF-IN(WATER LIQUID F)

AMOUNT-OF (C-S(WATER LIQUID G))

AMOUNT-OF(C-S(WATER LIQUID F)) L
B 7--what are the processes? =

<PARSED>
LIQUID-FLOW(WATER G F P1) -_7_
LIQUID-FLOW(WATER F G P1) -
6 ?--what is resettable? —
<PARSED> hd
DETAIL (Provides detailed output) T o
SHOW-TYPE (Show the type of a datum) NIL =
FORM (Form output)) T .
7 ?--reset detail. -*;;
<PARSED> hat
DETAIL reset. L
8 ?--what is the status of 83?7 d

<PARSED>
STATUS of §3 is R-COMPLETE. -
L
9 ?7--duration? L
DURATION of S3 is INTERVAL. =
10 7--827 -
DURATION of S2 is INTERVAL. %
11 ?--what are the end states?]
<PARSED> =
54 -
12 ?--eden states? _
83 §b =
13 7--what is A? «
I don’t understand. -
I got as far as :(WHAT IS)
14 7--what quantities does 1hO lead to? B
<PARSED> =
I can only answer questions about states or envs for LEAD. -
16 ?--lcad "/u/white/nev-att/qpe-itf/sfrings.lisp"! §

<PARSED>
I can’t find /u/white/new-att/qpe-att/strings.lisp .
%

28

-
-

- 16 ?--load "/u/white/new-att/qpe-att/string.lisp"!
<PARSED>
i+: Loading source file "/u/white/new-att/qpe-att/string.lisp"

17 7--1isp.

— -> (* 3.14159 3)
9.42477

18 ?--what is the duration of 837
<PARSED>
DURATION of S3 is INTERVAL.

19 ?--paraphrase.
= Sentence :what is the duration of s83?
= Paraphrase :duration s3?

<PARSED>
— Foregoing response

o require generalized SUBCATS (for DURATION)
| wa require generalized OBJOP (for S3)
L. require ?

- = 20 ?--duration 837
. <PARSED>
DURATION of S3 is INTERVAL.

¢

2] ?--duration and status s2?
<PARSED>

DURATION of S2 is INTERVAL.
ol STATUS of S2 is R-COMPLETE.

22 ?7--817
DURATION of S1 is INTERVAL.
STATUS of S1 is R-COMPLETE.

1l

i

23 ?--end-env 1h0?
<PARSED>
LHO doesn’t have END-ENV.

N

24 ?7--end-envs 1hO?
<PARSED>
END-ENVS of LHO is ENV-185.

{

26 ?--what is the amount-of water in G?

]
I

t

29

Ll

t

- <PARSED>

AMOUNT-OF (C-S(WATER LIQUID G))

268 ?--what influences it?
<PARSED>

AMOUNT-OF(C-S(WATER LIQUID G)) is influenced indirectly by (CONTAINED-STUFF (C-S(WATER

LIQUID G)))

27 ?--synonym.
Words :amount-of-in of water in f
Synonyn ramt-g

Adding synonym AMT-G for (AMOUNT-OF-IN OF WATER IN F)

28 7--how can ant-g change?
<PARSED>

AMOUNT-OF-IN(WATER LIQUID F) is increasing in (S3)
AMOUNT-OF-IN(WATER LIQUID F) is decreasing in (S6)
AMOUNT-OF-IN(WATER LIQUID F) is constant in (SO S1 S2 S4)

20 ?--use amt-of for amount-of.
<PARSED>
Adding synonym AMT-OF for (AMOUNT-OF)

30 ?--what is the amt-of water in f£7
<PARSED>
AMOUNT-0F (C-S(WATER LIQUID F))

31 ?--define FOO as the set of states with the amount of water in F increasing and

water flowing from G to F.
<PARSED> :

Please choose one by number to resolve ambiguity:

1 AMOUNT-OF (C-S(WATER LIQUID F))
2 AMOUNT-OF-IN(WATER LIQUID F)
3: ALL

CHOICE:1

Merci
Set: FOO
Elements: (S3)
Size: 1

Set FOO

32 ?7--get detail.
<PARSED>
DETAIL set.

30

DR

al

o i

i

.

Qi

[

i

g

GE

33 ?7--show Foo.
I am gtuck on the word SHOW.
Do you have a replacement word? (word or <enter to fail>) :display
Got it, DISPLAY for SHOW, thanks.
Should I consider SHOW a synonym for DISPLAY? (Y or N) y
Trying to add SHOW as a synonym for DISPLAY

Adding synonym SHOW for (DISPLAY)
<PARSED>

(1

Sclass S3, 1 situations:
Status = R-COMPLETE, Duration = INTERVAL
IS:QPE,C-S(WATER,LIQUID,G),C-S(WATER,LIQUID,F)
VS: VIO: CONTAINED-STUFF(C-S(WATER,LIQUID,G))
VIi: CONTAINED-STUFF(C-S(WATER,LIQUID,F))
PS: PIO: LIQUID-FLOW(WATER,G,F,P1)

oty

("

-- Environments --
had Env ENV-203:
o A[AMOUNT-OF-IN(WATER,LIQUID,G)]>ZERD
o= A [AMOUNT-OF-IN(WATER,LIQUID,F)]>ZERD
L= A[PRESSURE(C-S(WATER,LIQUID, F))]<A[PR£SSURE(C S(WATER,LIQUID,G))]
- A[FLOW-RATE(PIO)]>ZERD
= A[FLOW-RATE(PI1)]??ZERO
el ALIGNED(P1)

ENFORCE (QUANTITY-EXISTENCE)

34 ?--regset detail.
<PARSED>
== DETAIL reset.

35 7--what can 1h2 lead to?

<PARSED>

LH2 leads to the following states
s4

36 ?--what does 1h2 lead to?

<PARSED>

LH2 leads to the following states
54

37 ?--what states does 1h2 lead to?

R <PARSED>

: %% LH2 leads to the following states

il

|
|

{mi

31

5S4
38 ?7--to what states does 1h2 lead?

l

<PARSED> b
LH2 leads to the following states
54 =
30 ?--to what can 1h2 lead? -
<PARSED> o
LH2 leads to the following states
54 -
40 ?--what envs does 1h2 lead to? o
<PARSED> =
LH2 leads to the following environment: -
ENV-193 —
41 ?--what happens after 1lh2? -
<PARSED>
LH2 leads to the following states =
54 S -
42 ?7--what happens after 1lh2 occurs?
<PARSED> =
LH2 leads to the following states -
54 o
43 ?--what nust hold for lh2 to occur? ==
<PARSED> -
For LH2 to OCCUR one of the following environments must hold :
ENV-172 : =
L
44 ?7--what holds before 1h2? .
<PARSED> =
Before LH2 occurs the following envirionments may hold : -
ENV-172
45 ?--can sl occur from s0? -
<PARSED>
No S1 cannot occur from SO =
i
46 7--can 83 lead to 847
<PARSED> &5
Yes, S3 can lead to S4 directly. -
47 ?7--can 84 occur from s3? =
<PARSED> -
Yes, 54 can occur from 83 directly. o
48 ?--can 1h2 lead to an end state? -
<PARSED>
32 -
—

{

f { {

1

(.

¢

¢!

il

{

i

LH2 leads to the following specified states (i.e. end states) :

S4
49 7--is 80 an end state?
<PARSED>

yes SO is (a) (END STATE)

50 ?7--what states have transitions in?

<PARSED>

The following states have transitions IN :
sS4

51 7--what states have transitions out?

<PARSED>)

The following states have transitions OUT :
53 §Sb -)

52 7--does 80 have transitons?
<PARSED>

No transitions in to SO.

No transitions out of SO.

(Replaced TRANSITONS with TRANSITIONS)
53 ?--what corresponds to the amount-of water in g?
I am not able to handle correspondences.

64 ?--q

Do you want to save any paraphrases or synonyms? (Y or N) n
NIL

>

33

B GRAMMAR EXTENSIONS FOR QATT

i+ —%*- Package: ATT; Syntax: Common-Lisp -*-

G,

i7; Defn Comm - DRGW =
;;; These are meant to parse commands used to define sets of objects. =
i+ Detine X <as, to be> []. .
7is Call [x. iz
i:i Let X be []. -
:3: [1 : quantity-phrase .
1o the set of Y’s <with, in which> , =
157 ! quantity-phrase <increasing, decreasing, constant> -
HHH process-phrase <present, active>
s and . (possibly ORs later) (possibly NOTs later) - =
;11 "Call the level in G- LEV-G." -
:7: "Define FOO as the set of states in which the flow rate through PIPE1 is increasing."
;:: "Let BAR be the set of states with a flow into G <present> and boiling in F." %;
;+: Defn Conm
i1: Top level of Definition command parsing. =
(defrecord DEFN-COMM -
((branch (DEFINE
(test-word (lambda (x) t) NAME) -
;; add word to spell table DRGW 7/6 -
(test (or (spell-inmsert (get- binding ’'name)) t))
(parse defn-comm-connect) =
(parse gaggle) -
(parse punctuation)
(parse-result-if-end (respond 'define ’'verb-command))) ==
(CALL -
(parse gaggle)
(test-word (lambda (x) t) NAME) =
;7 add word to spell table DRGW 7/6 -
(test (or (spell-insert (get- bindlng 'name)) t)) -
(parse punctuation) =)
(parse-result-if-end (respond ’define ’verb-command))) -
(LET
(test-word (lambda (x) t) NAME) =
;7 add word to spell table DGRW 7/6 -
(test (or (spell-insert (get-binding ’name)) t))
(parse defn-comm-connect) =
(parse gaggle) -
(parse punctuation) -
(parse-result-if-end (respond ’'define ’'verb-command)))))) é;
ii: Gaggle (terrible name, I know) o
&
34
-

;1. parses the specification for the set of things being gathered.
;7 1.e. "...Set of states with <SPEC>..."

1i: (As in a gaggle of geese).

(defrecord GAGGLE

Ly

i i

RTCEL

bt - ((branch ((parse-optional article)
o set of
o (test-word (lambda (x) t) GAG-TYPE)
= (parse-optional gag-connect)
. (parse gag-specs)
= (parse-result (cons ‘'SET
bt (cons (get-binding ’gag-type)
o (1ist (get-binding ’gag-specs))))))
E4 ((parse quantity-phrase) :
= (parse-result (get-binding 'quantity-phrase)))
o ((parse process-phrase)
= (parse-result (get-binding 'process-phrase))))))
~
i, Gag Specs’
= i+ parses specifications for set membership
= (defrecord gag-specs
- ((branch ((parse gag-spec)
B (one-of and or)
(test (bind 'gagl (get-binding ’gag-spec)))
(parse gag-specs)
= (parse-result (cons (get-binding ’'gagl)
= (get-binding ’gag-specs))))
L ((parse gag-spec)
= (parse-result (list (get-binding ’'gag-spec)))))))
o i1 Gag Spec
CoE i, parses a single specification for set membership
- = (defrecord GAG-SPEC
((branch ((parse good-quantity-phrase)
; %f (parse gag-spec-q-spec)

(parse-result (cons (get-binding ’'gag-spec-q-spec)
(get-binding ’'quantity-phrase))))
((parse good-process-phrase) '
= (parse gag-spec-p-spec) .
(parse-result (cons (get-binding 'gag-spec-p-spec)
(get-binding ’'process-phrase))))
((parse good-proc-v-phrase) ;:Doesn’t require a p-spec
(parse-result (cons (find-p-spec (get-binding ’good-proc-v-phrase))
' (get-binding ’'good-proc-v-phrase))))

{1

((parse lh-phrase)
o (parse gag-spec-lh-spec)
i = (parse-result (cons (get-binding 'gag-spec-lh-spec)
f o
— 35
=

gri

(get-binding 'lh-phrase)))))))

e

i
i

:::; Gag Spec Q Spec g
;i; parses a specifying word for quantities (like increasing). i
(defrecord GAG-SPEC-Q-SPEC
((branch ((parse-optional preposed-aux) ; is increasing, increases -> val of increase
(parse verb) . -
(test (and (pget (get-binding ’verb) ’'verb)
(member 'q-spec =
(lexical-subcat (pget (get-binding ’verb) 'verb))))) -
(parse-result
(get (verb-key (lexical-info (pget (get-binding ’'verb) ’verb))) ==
'val))) |
((parse-optional preposed-aux)
(test-word (lambda (x) = |
(member x (lexical-info (pget 'q-spec ’subcat)))) spec) =
(parse-result (get (get-binding ’spec) 'val))))))
i:; Gag Spec P Spec =]
;i parses a specifying word for processes (like active).
(defrecord GAG-SPEC-P-SPEC =
((branch ((parse-optional preposed-aux) =
(parse verb)
(test (and (pget (get-bznding 'verb) ’verb) —
(member 'p-spec (lexical-subcat -
(pget (get-binding verb) 'verb)))))
(parse-result -
(get (verb-key (lexical-info (pget (get-binding ’verb) ’verb))) 'val))) =
((parse-optional preposed-aux)
(test-word (lambda (x) —
(member x (lexical-info (pget ’'p-spec 'subcat)))) spec) -
(parse-result (get (get-binding ’spec) ’'val))))))
i:: GAG-SPEC-LH-SPEC parses a specifying word for LHs (like occur). -
(defrecord GAG-SPEC-LH-SPEC
((branch ((parse-optional preposed-anx) —
(parse verb) -
(test (and (pget (get-binding 'verb) 'verb)
(member ’lh-spec —
(lexical-subcat (pget (get-binding ’verb) ’verb))))) -
(parse-result
(get (verb-key (lexical-info (pget (get-binding ’verb) ’verb))) ’val))) et
((parse-optional preposed-aux) -
(parse neg)
(parse verb) —
-
36
-

G

(

U

'

L

(test (and (pget (get-binding 'verb) ’verd)
(member *lh-spec
(lexical-subcat (pget (get-binding ’'verdb) ’verb)))))
(parse-result (- O (get (verb-key
(lexical-info (pget (get-binding ’'verb) ’verb)))
'val))))
((parse-optional preposed-aux)
(test-word (lambda (x) ‘
(menmber x (lexical-info (pget 'lh-spec ’subcat)))) spec)
(parse-result (get (get-binding ’'spec) ’val))))))

;+: Defn Comm Connect
;3 parses connecting words for definition commands
(defrecord defn-comm-connect
((branch (be (parse-result ’‘be))
(to be (parse-result ’to-be))
(as (parse-result ‘as)))))

;7 Gag Comnect

i+ parses connecting words for gaggles.

(defrecord gag-connect

((branch (with (parse-result ’with))

(where (parse-result ’where))
(in which (parse-result 'in-which))
(that (parse-result 'that)) : ;DRGW 8/26
(that have (parse-result 'have)))))

i+ -*- Package: ATT; Syntax: Common-Lisp -*-
ii: QPE-ATT specific grammar enhancements for quantities - DRGW

;i: Good Quantity Phrase
;:: Requires a Q to be found from Q-Phrase
(defrecord good-quantity-phrase
((parse quantity-phrase)
(test (find-quantity (get-binding ’quantity-phrase)))
(parse-result (get-binding ’quantity-phrase))))

i+ Quantity Phrase
i:: Parses a phrase that refers to a Quantity

iiv 1.e. "... amount of water in cani..."
(defrecord QUANTITY-PHRASE
((branch

((parse quantity-p)
(test (not (prep-next? ’'quantity-p)))

37

(parse-result (get-binding ’quantity-p)))
((rebind)
(parse quantity-p)
(test (prep-next? ’quantity-p))
(test (bind ’'quanti (get-binding ’'quantity-p)))
(parse prep)
(test (bind ’prepl (get-binding ’prep)))
(branch
((parse quantity-phrase) e
(parse-result (list (get-binding quanti)
(get-binding ’prepi)
(get-binding ’quantity-phrase))))
((parse good-process-phrase)
(parse-result (list (get-binding ’'quanti)
(get-binding ’prepi1)
(get-binding ’good-process-phrase))))

ii: Quantity P
1+, Gathers quantity type words and eats articles.
(defrecord quantity-p
((parse-optional article)
(parse quantity-words)
(parse-result (get-binding ’quantity-word))))

ii: Quantity Words
;1 Gathers consequtive Quantity words (maybe "and")
(defrecord quantity-words
((branch
((parse quantity-word)
' (parse-result (list (get-binding ’quantity-word))))
1y Tlow rate
((parse quantity-word)
(test (bind 'q-wordl (get-binding quantity word)))
(parse quantity-words)
(parse-result (cons (get-binding ’'q-word1)
(get-binding ’quantity-words))))
;i flow and pressure
((parse quantity-word)
(test (bind 'q-wordl (get-binding ’quantity-word)))
and
(parse quantity-words)
(parse-result (cons (get-binding ’'q-word1)
(cons ’and
(get-binding ’quantity-words))))))))

;77 Quantity Word

38

1))

,r
'[li.

LS

Wil

i

{1

I
I

@i

Qi

@i

it

&l |

Wil

i

L i

L H

will

- i+ Parses a single Quantity word.

= ;:: TeSt makes sure that the subcat is a quantity word

;i (Set in Init-Qs())

: (defrecord quantity-word

= ((parse subcat)
(test (and (pget (get-binding ’'subcat) ’subcat)

_— (1istp (lexical-subcat (pget (get-binding ’subcat) ’subcat)))

= (member ‘quant (lexical-subcat (pget (get-binding ’subcat) ’subcat)))))
(parse-result (get-binding ’subcat))))

- i3+ Prepp Obj

. :;: parses prepp and returns its object

- i3 NOTE: This had to be added to avoid ATT's
==

;3 ingistance on restrictive Prepps.
- (defrecord prepp-obj .
- ((parse prep) ; using prepp sends it down noun-with-adj
(parse-optional article)
(parse subcat)
(parse-result (list (get-binding ’'prep)
(get-binding 'subcat)))))

il

(S

;i Prepp Objs
i+ Parses multiple Prepp-objs
(defrecord prepp-objs

((branch ((parse prepp-obj)

(i

i

(test (prep-next? nil)) _

, (test (bind 'pol (get-binding ’'prepp-obj)))

e (parse prepp-objs)

< (parse-result (cons (get-binding ’'pol)

(get-binding ’prepp-objs))))

- ((parse prepp-obj)

- (parse-result (get-binding ’prepp-obj))))))

= ii: Prep Next?

= ;17 Test to see if the next wrod is a Prep

i+ or the last word ended with a prep (i.e. amount-of)

- (defun prep-next? (bound-part)

E (cond ((prep? (car remaining-words)) t)
o ((and bound-part
= (prep? (car (last (dehyph (get-binding bound-part))))) ; amount-of case
o (push (car (last (dehyph (get-binding bound-part)))) .

remaining-words)))))

= ii: -*- Package: ATT; Syntax: Common-Lisp -*-

= i+: QPE-ATT specific grammar enhancements for processes - DRGW

=

o 39

::: Good Process Phrase

N Requif;s a Process to be found from phrase

(defrecord good-process-phrase

((branch ;; the Flow of water from A to B

((parse process-phrase)
(test (setq res (find-process (get-binding ’'process-phrase))))
(parse-result (get-binding ’'process-phrase)))
:; water is flowing from A to B
((parse PROC-V-PHRASE)
(parse-result (get-binding ’'proc-v-phrase))))))

:7: Good Process V Phrase)
;+; Requires a Process to be found from the V-Phrase
(defrecord good-proc-v-phrase
((parse PROC-V-PHRASE)
(test (find-process (get-binding ’proc-v-phrase)))
(parse-result (get-binding 'proc-v-phrase))))

i Process Phrase :
;1. Parses a phrase that might refer to a process of the form
;i "... FLow of water from F to G.
(defrecord PROCESS-PHRASE
((branch
((parse process-p)
(test (not (prep-next? 'process-p)))
(parse-result (list 'PROC (get-binding process-p))))
((rebind)
(parse process-p)
(test (prep-next? ’process-p))
(test (bind ‘proci (get-binding ’process-p)))
(parse prep)
(test (bind ’'prepi (get-binding 'prep)))
(parse process-phrase)
(parse-result (list ’PROC
(1ist (get-binding 'proci)
(get-binding ’'prepl)
(get-binding ’'process-phrase))))))))

. Process V Phrase
';i: parses a process phrase where the process key word is
1+ used as a Verb in the phrase.
;ii i.e. water is flowing from A to B.
;+: NOTE: This verb must be added to lexicon!
(defrecord PROC-V-PHRASE
((parse-optional article)

40

&

il

Wi W SR

 ([H—]

Al |

(I

]

{

g

Ml

LRI

i

L

I

Ll

ar:

il

i

1
i

(i

(parse process-words)

(parse-optional preposed-aux)

(parse proc-verb)

(parse prepp-objs)

(parse-result (list (if (member ’'neg *tense*) ’'NOT)
(verb-key (lexical-info (pget (get-binding ’proc-verb) ’verb)))
(get-binding ’prepp-objs)))))

ii; Proc Verd
i+ Parses a process verb like "Flowing"
(defrecord proc-verdb
((parse-optional preposed-aux)
(parse-optional neg)
(parse verb)
(test (member 'PROC-VERB (lexical-subcat (pget (get-binding 'verbd) 'verb))))
(parse-result (get-binding ‘verb))))

" ::: Process P

;.. parses multiple process words and articles
(defrecord process-p
((parse-optional article)
(parse process-words)
(parse-result (get-binding ’'process-word))))

i+: Process Word
i;: Parse a process word
i+, Subcat must have 'PROC as a :subcat,
;i: Put in in Init-PsVs().
(defrecord process-word
((parse subcat)
(test (and (pget (get-binding 'subcat) ’subcat)
(1istp (lexical-subcat (pget (get-binding ’subcat) ’subcat)))
(member 'proc (lexical-subcat (pget (get-binding ’subcat) ’subcat)))))
(parse-result (get-binding ’'subcat))))

17 Process Words

;:: Parses multiple process words

(defrecord process-words

((branch

((parse process-word)
(parse-result (list (get-binding ’process-word))))
;pumped flow
((parse process-word)
(test (bind ’'p-wordl (get-binding ’process-word)))
(parse process-words)
(parse-result (cons (get-binding ’p-wordi)

41

(get-binding ’process-words))))
;;pumped and flow (It could happen)
((parse process-word)
(test (bind ’p-wordl (get-binding ’process-word)))
and
(parse process-words)
(parse-result (cons (get-binding ’p-wordil)

(cons ’'and

(get-binding ’process-words))))))))

i3: -*- Package: ATT; Syntax: Common-Lisp -#*-
+1: QPE-ATT specific grammar enhancements for Limit Hypotheses - DRGW

7+ Lh Phrase
;i; Parses limit hypothesis phrases
i:: NOTE for now just requires some lh-words
(detrecord LH-PHRASE
((parse lh-words)
(parse-result (get-binding ’lh-words))))

;i Lh Words

;. Parses multiple LH words

(defrecord lh-words

((branch ((parse lh-word)
(test (bind ’1h1 (get-binding ’'lh-word)))
(parse lh-words)
(parse-result (cons (get-binding '1lhi1)
(get-binding ’'lh-words))))

((parse lh-word)
(parse-result (get-binding ’'lh-word))))))

;7 Lh Word
++: Parses one Lh word N 7
:;; Requires the subcat to have 'limit-hypothesis in its :info
(defrecord lh-word

((test-word (lambda (w)

(member w (lexical-info
(pget 'limit-hypothesis ’'subcat)))) lhw)
(parse-result (get-binding 'lhw))))

75+ Lh Verdb
i:: Parses a verb disignated as being a possible LH spec
i1y 1.e. "...occurs..." or "... happens ..."

(defrecord lh-verb
((parse verb)

42

{

1l

Bl @B n! o0

Wi

i

B W@l . el

(test (member ’LH-VERB (lexical-subcat (pget (get-binding ’'verd) ’verbd))))
~ (parse-result (get-binding ’'verb))))

Qi

43

I

€1

i

"
b,

{

=
==

3
1

3

e

L m f\ |
!

rHWMV‘"H ! rﬁ“ T

ﬂ I

rl\‘\ (|

BIBLIOGRAPHIC DATA 1. Report No. 2
SHERT UIUCDCS-R-89-1535

3. Recipient’s Accession No.

[4. Ticle and Subcitle

QATT: ,A NATURAL LANGUAGE INTERFACE FOR QPE

3. Report Date

August 1989

é.

7. Auchoe(s)
Douglas Robert-Graham White

8. Performing Or;nnizuioli Repe.

No. p.89-1535

9. Performing Organizatioa Name and Address

Dept. of Computer Science
1304 W. Springfield Avenue
Urbana, IL 61801

10. l-’roiect/Tuk/Work Unic No.

11, Coneract/Grane No.

12, Sponsoring Orgamization Name and Address

13. Type of Repoet & Period
Covered

Technical

14

15. Supplementary Noces

16. Abstracts

useful interface in a few months.

This thesis presents QATT, a natural language interface developed for the Qualitative Process
Engine (QPE) system. The major goal of the project was to evaluate the use of a preexis: ng
natural language understanding system designed to be tailored for query processing in multiple
domains of application. The other goal of QATT is to provide a comfortable environment in which
to query envisionments in order to gain insight into the qualitative behavior of physical systems.

. It is shown that the use of the preexisting system made possible the development of a reasonably

"[17. Key Words and Document Analysis. 17 Descripeors

natural language
qualitative physics
interfaces

176, ldencifiers/Open-Eaded Terms

17¢. COSAT! Field/Group

| 18. Availabilicy Scatement

unlimited

!KSccurity Class (This
Report)

21. No. of Pages

50

ec uriey ss (This

PI1I

Il

FORM NTIS 8 (10-70)

22. Price

| USCONMM-OC 40329-871

i

